High-Speed Jitter Testing of XFP Transceivers

ثبت نشده
چکیده

Jitter is a key performance factor in high-speed digital transmission systems, such as synchronous optical networks/synchronous digital hierarchy (SONET/SDH), optical transport networks (OTN), and 10 Gigabit Ethernet (GE). This paper outlines the differences between telecom and datacom jitter standards and describes the various jitter applications for compliance testing of 10 G small form-factor pluggable (XFP) transceivers, which have become the dominant 10 G optical interface for telecom and datacom applications. By Andreas Alpert Introduction Accurate jitter measurements are essential for ensuring error-free high-speed data transmission lines. Jitter which is any phase modulation above 10 Hz in a digital signal, is unwanted and always present within devices, systems, and networks. To ensure interoperability between devices and to minimize signal degradation due to jitter accumulation, limits must be set for the maximum level of jitter for an output interface as well as the maximum level tolerated at an input. Standards bodies determined these limits which can be divided into two categories: telecommunications and data communications. The major telecom standards organizations are International Telecommunications Union (ITU-T) and Telcordia, while the Institute of Electrical and Electronic Engineers (IEEE) is the main datacom standardization organization. Jitter Aspects and Characteristic Values for 10 G Telecom and datacom technologies use different timing methods. The system components in synchronous systems, such as SDH/SONET, synchronized to a common clock. In asynchronous and serial systems, such as 10 GE, distributed clocks or clock signals recovered from the data provide the component timing. While it is important to limit jitter generated by components jitter transferred from one component to another is less important than that for synchronous systems, where jitter can increase as it transfers from component to component. Well-defined band-limited jitter generation, tolerance, and transfer requirements exist for SDH/SONET/OTN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

White Paper : High - Speed Jitter Testing of XFP

Jitter is a key performance factor in high-speed digital transmission systems, such as synchronous optical networks/synchronous digital hierarchy (SONET/SDH), optical transport networks (OTN), and 10 Gigabit Ethernet (GigE). This paper outlines the differences between telecom and datacom jitter standards and describes the various jitter applications for compliance testing of 10G small form-fact...

متن کامل

Dual Phase Detector Based Delay Locked Loop for High Speed Applications

In this paper a new architecture for delay locked loops will be presented.  One of problems in phase-frequency detectors (PFD) is static phase offset or reset path delay. The proposed structure decreases the jitter resulted from PFD by switching two PFDs. In this new architecture, a conventional PFD is used before locking of DLL to decrease the amount of phase difference between input and outpu...

متن کامل

Understanding Eye Pattern Measurements Application Note

The growth of high-speed Internet has driven data-transmission technology to fully commercialize on 10 Gbps data rates for use in metro and access segments of the next generation network. A key enabling component in the physical layer is the transceiver module, which enables vital transmit and receive operations at the end of each fiber optic link. Transceiver modules, such as the XFP/SFP/SFP+ ...

متن کامل

Gb / s Optical Transceivers : Fundamentals and Emerging Technologies

Continued demand for higher bandwidth in data networks along with an industry need for standardized network components has driven the need for 10 Gb/s optical transceivers into the long haul, metro core, and enterprise/storage environments. In response to this demand, the functionality and performance of these modules have increased significantly, while the size, cost, and power consumption hav...

متن کامل

Analysis of PLL Clock Jitter in High-Speed Serial Links

We analyze the effects of transmitter and receiver phased-locked loop (PLL) phase noise, which translates to time-domain clock/data jitter, on the performance of high-speed transceivers. Analytical expressions are derived to incorporate both transmitter and receiver clock jitter into serial link operation. A method to calculate the worst-case noise margin degradation due to clock jitter is disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015